Biomanipulation of bovine spermatogonial stem cells
نویسندگان
چکیده
The field of spermatogonial stem cell (SSC) technologies provides tools for genetic improvement of cattle herds and multiple opportunities for research. Spermatogonial stems cells belong to the male germ line and as such have high developmental potential, which offers many possibilities for transfer of relevant genetic traits across herds in a timely manner. Type A spermatogonia include a very small number of SSCs and their more numerous differentiating daughter cells. Initial attempts to isolate SSCs started with the isolation of type A spermatogonia and SSC purification. Type A spermatogonia can be obtained in large numbers from young prepubertal bulls, and it is important to note that there are breed differences. Type A spermatogonia isolation can be achieved through mechanical dissociation and enzymatic digestion of the testicular tissue followed by two purification steps, with a final typical bovine type A spermatogonia suspension of 70%. An evaluation for SSC activity using a transplantation assay adapted for bovine SSCs is described. Bovine Type A spermatogonia can be maintained in vitro for short periods (7 to 15 days) with simple culture conditions. However, expansion of SSC can only be achieved under certain conditions such as a specially supplemented medium, specific growth factors, and serial sub-culturing for longer periods of time. After expansion, bovine spermatogonia can be cryopreserved while retaining the ability to proliferate and survive. Despite all the challenges with development of SSC technologies, many questions arise focusing on how bovine SSCs work in a biotechnological setting. Progress in this field will probably result in new applications not only for bulls but also for other species with economical or ecological impact.
منابع مشابه
Follicle stimulating hormone increases spermatogonial stem cell colonization during in vitro co-culture
The complex process of spermatogenesis is regulated by various factors. Studies on spermatogonial stem cells (SCCs) have provided very important tool to improve herd genetic and different field. 0.2 to 0.3 percent of total cells of seminiferous tubules is consist of spermatogonial stem cells. To investigate and biomanipulation of these cells, proliferation and viability rate of cells should be ...
متن کاملIsolation of bovine spermatogonial cells and co-culture with prepubertal sertoli cells in the presence of colony stimulating factor-1
BACKGROUND: Spermatogonial stem cells (SSCs) are infrequentself-renewing cells among the type A spermatogoniawithin the seminiferous tubules and are the basis of spermatogenesisin mammalian testis. An adequate number of SSCs is aprimary requirement for the study of their behavior, regulation, andfurther biomanipulation. OBJECTIVES: In this paper, we studiedthe development of the primary co-cult...
متن کاملTransfection of bovine spermatogonial stem cells in vitro
Spermatogonial stem cells (SSCs) are the only stem cells in adults that can transfer genetic information to the future generations. Considering the fact that a single SSC gives rise to a vast number of spermatozoa, genetic manipulation of these cells is a potential novel technology with feasible application to various animal species. The aim of this study was to evaluate enhanced green fluoresc...
متن کاملEnhancement in colonization of bovine spermatogonial stem cells following addition of knock-out serum replacement to culture medium
Enrichment of cell suspension with germ cells prior to injection into recipient seminiferous tubules is of importance in spermatogonial stem cells (SSCs) transplantation. Knock-out serum replacement (KSR) has been reported to enhance the proliferation of murine SSCs and human embryonic stem cells. The aim of the present study was to investigate the effect of KSR versus fetal bovine serum (FBS) ...
متن کاملFollicle stimulating hormone increases spermatogonial stem cell colonization during in vitro co-culture
The complex process of spermatogenesis is regulated by various factors. Studies on spermatogonial stem cells (SCCs) have provided very important tool to improve herd genetic and different field. 0.2 to 0.3 percent of total cells of seminiferous tubules is consist of spermatogonial stem cells. To investigate and biomanipulation of these cells, proliferation and viability rate of cells should be ...
متن کاملThe role of fibroblast growth factor receptor 2 (FGFR2) in differentiation of bovine spermatogonial stem cells (SSCs)
The receptors 1 and 2 of fibroblast growth factor (FGFR1 and FGFR2, respectively) have been observed in all types of testicular cells. Culture on extracellular matrix (ECM) has been observed to lead to initiation of differentiation in spermatogonial stem cells (SSCs). The present study was carried out to investigate whether FGFR1 and FGFR2 play a role in SSCs differentiation. Following isolatio...
متن کامل